Essentials of Mechanica Ventilation FOURTH EDITION

Dean R. Hess + Robert M. Kacmarek

Essentials of Mechanical Ventilation

Notice

Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The author and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the author nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of such information contained in this work. Readers are encouraged to confirm the information contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infrequently used drugs.

Essentials of Mechanical Ventilation Fourth Edition

DEAN R. HESS, PhD, RRT

Teaching Associate in Anaesthesia Harvard Medical School Respiratory Care Services Massachusetts General Hospital Lecturer Northeastern University Boston, Massachusetts

ROBERT M. KACMAREK, PhD, RRT

Professor of Anaesthesia Harvard Medical School Director of Respiratory Care Services Massachusetts General Hospital Boston, Massachusetts

New York Chicago San Francisco Athens London Madrid Mexico City Milan New Delhi Singapore Sydney Toronto Copyright © 2019 by McGraw-Hill Education. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-1-26-002610-8 MHID: 1-26-002610-8

The material in this eBook also appears in the print version of this title: ISBN: 978-1-26-002609-2, MHID: 1-26-002609-4.

eBook conversion by codeMantra Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Education's prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED "AS IS." McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUD-ING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

Dedication _____

For my wife, Susan; my daughters, Terri and Lauren; their spouses, Rob and Matt; and my grandchildren, Max, Abby, and Caris—who make every day enjoyable. *D.R.H.*

For Cristina, the love of my life, and my children Robert, Julia, Katie, and Callie, who make it all worthwhile. *R.M.K.*

Contents

Preface	ix
Abbreviations	xi

Part 1	Principles of Mechanical Ventilation	
Chapter 1	Physiologic Effects of Mechanical Ventilation	1
Chapter 2	Physiologic Goals of Mechanical Ventilation	12
Chapter 3	Ventilator-Induced Lung Injury	20
Chapter 4	Ventilator-Associated Events and Ventilator-Associated Pneumonia	30
Chapter 5	Ventilator Mode Classification	40
Chapter 6	Traditional Modes of Mechanical Ventilation	50
Chapter 7	Pressure and Volume Ventilation	61
Chapter 8	Advanced Modes of Mechanical Ventilation	73
Chapter 9	Flow Waveforms and Inspiratory: Expiratory Relationship	87
Chapter 10	High-Frequency Ventilation	100
Chapter 11	Noninvasive Respiratory Support	108
Chapter 12	Humidification and the Ventilator Circuit	122
Chapter 13	F10 ₂ , Positive End-Expiratory Pressure, and Mean Airway Pressure	133
Chapter 14	Initial Settings for Mechanical Ventilation	145
Chapter 15	Patient-Ventilator Interaction	153
Chapter 16	Ventilator Liberation	167

Part 2 Ventilator Management

Chapter 17	Acute Respiratory Distress Syndrome	181
Chapter 18	Obstructive Lung Disease	195
Chapter 19	Chest Trauma	208
Chapter 20	Head Injury	216
Chapter 21	Postoperative Mechanical Ventilation	227
Chapter 22	Neuromuscular Disease	235

Contents

viii

Chapter 23	Cardiac Failure	245
Chapter 24	Burns and Inhalation Injury	252
Chapter 25	Bronchopleural Fistula	262
Chapter 26	Drug Overdose	270
Chapter 27	Ventilatory Management of the Obese Patient	275

Part 3	Monitoring During Mechanical Ventilation	285
Chapter 28	Blood Gases	285
Chapter 29	Pulse Oximetry, Capnography, and Transcutaneous Monitoring	300
Chapter 30	Hemodynamic Monitoring	312
Chapter 31	Basic Pulmonary Mechanics During Mechanical Ventilation	322
Chapter 32	Waveforms: Scalars and Loops	331
Chapter 33	Esophageal Manometry and Bedside Imaging During Mechanical Ventilation	343
Chapter 34	Nutritional Assessment	355

Part 4	Topics Related to Mechanical Ventilation	365
Chapter 35	Airway Management	365
Chapter 36	Airway Clearance	375
Chapter 37	Inhaled Drug Delivery	383
Chapter 38	Emergency Ventilation and Ventilation in a Disaster	390
Chapter 39	Mobilization and Portable Ventilation	400
Chapter 40	Extracorporeal Life Support	406
Index		415

Preface

Mechanical ventilation is an integral part of the care of many critically ill patients. It is also provided at sites outside the ICU and outside the hospital, including long-term acute care hospitals and the home. A thorough understanding of the essentials of mechanical ventilation is requisite for respiratory therapists and critical care physicians. A general knowledge of the principles of mechanical ventilation is also required of critical care nurses, mid-level providers, hospitalists, and primary care physicians whose patients occasionally require ventilatory support.

This book is intended to be a practical guide to adult mechanical ventilation. We have written this book from our perspective of nearly 100 years of experience as clinicians, educators, researchers, and authors. We have made every attempt to keep the topics current and with a distinctly clinical focus. We have reviewed every word and updated the content as necessary. We have added new content such as mechanical ventilation of the obese patient and advanced monitoring procedures. Concepts such as driving pressure are included. We have checked the content against recently published clinical practice guidelines. As in the previous editions, we have kept the chapters short, focused, and practical.

Like previous editions, the book is divided into four parts. Part 1, *Principles of Mechanical Ventilation*, describes basic principles of mechanical ventilation and then continues with issues such as indications for mechanical ventilation, appropriate physiologic goals, and liberation from mechanical ventilation. Part 2, *Ventilator Management*, gives practical advice for ventilating patients with a variety of diseases. Part 3, *Monitoring During Mechanical Ventilation*, discusses blood gases, hemodynamics, mechanics, and waveforms. In the final part, *Topics Related to Mechanical Ventilation*, we discuss issues such as airway management, aerosol delivery, and extracorporeal life support.

This is a book about mechanical ventilation and not mechanical ventilators per se. We do not describe the operation of any specific ventilator (although we do discuss some modes specific to some ventilator types). We have tried to keep the material in this book generic and it is, by and large, applicable to any adult mechanical ventilator. We do not cover issues related to pediatric and neonatal mechanical ventilation. Because these topics are adequately covered in pediatric and neonatal respiratory care books, we have limited the focus of this book to adult mechanical ventilation. Although we provide a short list of suggested readings at the end of each chapter, we have specifically tried to make this a practical book and not an extensive reference book.

This book is written for all clinicians caring for mechanically ventilated patients. We believe that it is unique and hope you will enjoy reading it as much as we have enjoyed writing it.

Dean R. Hess, PhD, RRT Robert M. Kacmarek, PhD, RRT

Abbreviations

A/C	Assist/control	СРР	Cerebral perfusion pressure
AG	Anion gap	CPR	Cardiopulmonary resuscitation
APRV	Airway pressure release ventilation	CSV	Continuous spontaneous ventilation
ARDS	Acute respiratory distress	СТ	Computed tomography
	syndrome	$C\overline{v}o_2$	Mixed venous oxygen content
ARDSnet	ARDS Network	CVP	Central venous pressure
AVAPS	Average volume assured pressure support	C _w	Chest wall compliance
BAL	Bronchoalveolar lavage	Do ₂	Oxygen delivery
BE	Base excess	EAdi	Electrical activity of the diaphragm
BEE	Basal energy expenditure	ECLS	Extracorporeal life support
BSA	Body surface area	ECMO	Extracorporeal membrane
CCI	Chronic critical illness		oxygenation
Cao ₂	Oxygen content of arterial blood	EELV	End-expiratory lung volume
Cc'o ₂	Pulmonary capillary oxygen content	EPAP	Expiratory positive airway pressure
CDC	Centers for Disease Control and Prevention	f_{b}	Frequency of breathing; respiratory rate
CI	Cardiac index	f _c	Heart rate
C _L	Lung compliance	FIO ₂	Fraction of inspired oxygen
Cl	Chloride ion	FRC	Functional residual capacity
CMV	Continuous mandatory	Hb	Hemoglobin
	ventilation	НЬСО	Carboxyhemoglobin
CO	Carbon monoxide	HCO_{3}^{-}	Bicarbonate concentration
Co ₂	Oxygen content of the blood	HFJV	High-frequency jet ventilation
COPD	Chronic obstructive pulmonary disease	HFOV	High-frequency oscillatory ventilation
CPAP	Continuous positive airway pressure	HFPPV	High-frequency positive pressure ventilation

Abbreviations

HFV	High-frequency ventilation	ΔΡΟΡ	Plethysmographic waveform
HME	Heat and moisture exchanger		amplitude
Hz	Hertz	ΔPpl	Change in pleural pressure
I:E	Inspiratory time to expiratory time ratio	P(a-et)CO ₂	Difference between arterial and end-tidal PCO ₂
ICP	Intracranial pressure	$P(A-a)O_2$	Difference between alveolar Po and arterial Po ₂
ICU	Intensive care unit	Paco	Partial pressure of carbon
IMV	Intermittent mandatory ventilation	Paco ₂	dioxide in arterial blood
iNO	Inhaled nitric oxide	Palv	Mean alveolar pressure
IPAP	Inspiratory positive airway	Palv	Alveolar pressure
	pressure	Pao ₂	Partial pressure of oxygen in arterial blood
ISB	Isothermal saturation boundary	PAO ₂	Alveolar Po ₂
IVAC	Infection-related ventilator-	Pao_2/PAO_2	Ratio of arterial PO ₂ to alveolar
j	associated condition Joule	1 a0 ₂ /1 A0 ₂	Po ₂
J	Left ventricle	Pao ₂ /Fio ₂	Ratio of arterial Po, to F10,
LVSWI	Left ventricular stroke work	PAP	Pulmonary artery pressure
	index	PAV	Proportional-assist ventilation
MAP	Mean arterial pressure	Paw	Mean airway pressure
MDI	Metered-dose inhaler	Pb	Barometric pressure
MIC	Maximum insufflation capacity	Pbo ₂	Brain Po ₂
MIE	Mechanical insufflation–	PBW	Predicted body weight
	exsufflator	PC-CMV	Continuous mandatory
MMV	Mandatory minute ventilation		ventilation with pressure control
MODS	Multiple organ dysfunction syndrome	PC-IMV	Pressure-controlled intermittent mandatory ventilation
MPAP	Mean pulmonary artery pressure	PCIRV	Pressure-controlled inverse ration ventilation
NO	Nitric oxide	Pco ₂	Partial pressure of carbon
Na ⁺	Sodium	-	dioxide
NAVA	Neurally adjusted ventilatory	PCV	Pressure-controlled ventilation
	assist	PCWP	Pulmonary capillary wedge
NIV	Noninvasive ventilation	D J:	pressure
NPE	Neurogenic pulmonary edema	Pdi	Transdiaphragmatic pressure
OI	Oxygenation index	PECO ₂	Mixed exhaled Pco ₂
ΔPaw	Change in airway pressure	PH ₂ O	Water vapor pressure
ΔP_{L}	Transpulmonary pressure	PEEP	Positive end-expiratory pressure

PEG	Percutaneous endoscopic	R _E	Expiratory resistance
	gastrostomy	REE	Resting energy expenditure
Peso	Esophageal pressure	REM	Rapid eye movement
Petco ₂	End-tidal Pco ₂	R _I	Inspiratory resistance
Pexhco ₂	Measured mixed exhaled Pco_2	RSBI	Rapid shallow breathing index
	including gas compressed in the ventilator circuit	RVSWI	Right ventricular stroke work index
рН	Negative log of the hydrogen ion concentration	Sao ₂	Hemoglobin oxygen saturation of arterial blood
PI	Plethysmographic perfusion index	SBT	Spontaneous breathing trial
PI _{max}	Maximum inspiratory pressure	Scvo ₂	Central venous oxygen saturation
PImin	Minimal value of the	SID	Strong ion difference
	plethysmographic perfusion index	SIMV	Synchronized intermittent
PIP	Peak inspiratory pressure		mandatory ventilation
Pmus	Pressure generated by the respiratory muscles	Sjvo ₂	Jugular venous oxygen saturation
PMV	Prolonged mechanical	Spco	Carbon monoxide measured by
	ventilation		pulse oximetry
Po ₂	Partial pressure of oxygen	Ѕрнь	Hemoglobin measured by pulse oximetry
Pplat	Plateau pressure	SpMet	Methemoglobin measured by
PPV	Pulse pressure variation	-F	pulse oximetry
PRVC	Pressure-regulated volume control	Spo ₂	Hemoglobin oxygen saturation measured by pulse oximetry
PSV	Pressure support ventilation	SVI	Stroke volume index
Ptcco ₂	Transcutaneous Pco ₂	Svo,	Mixed venous oxygen saturation
Ptco ₂	Transcutaneous Po ₂	SVR	Systemic vascular resistance
$P\overline{v}o_2$	Mixed venous Pco ₂	SVRI	Systemic vascular resistance
Pvent	Pressure-generated by the		index
	ventilator	T_{E}	Expiratory time
PVI	Plethysmographic variability	T _I	Inspiratory time
Dec. 5	index	T _T	Total cycle time
Pv-o ₂	Mixed venous Po ₂	UUN	Urine urea nitrogen
PVR Ò	Pulmonary vascular resistance	Ϋ́	Flow
Q _c	Cardiac output	V́А	Alveolar ventilation
\dot{Q}_{s}/\dot{Q}_{T}	Pulmonary shunt	ൎV∕Q	Ratio of ventilation to blood
R	Respiratory quotient		flow

VIV	
ΛΙ V	

VAC	Ventilator-associated condition	VC-IMV	Volume-controlled intermittent
VAE	Ventilator-associated event		mandatory ventilation
VAP	Ventilator-associated pneumonia	$V_{\rm D}/V_{\rm T}$	Dead space-to-tidal volume ratio
VC	Vital capacity	VILI	Ventilator-induced lung injury
Vco ₂	Carbon dioxide production	Vo ₂	Oxygen consumption
V _D ²	Dead space ventilation	VS	Volume support
\dot{V}_{E}	Minute ventilation	V _T	Tidal volume
\dot{V}_{I}	Inspiratory flow	W	Work
VCV	Volume-controlled ventilation	τ	Time constant
VC-CMV	Continuous mandatory ventilation with volume control		

Part 1 Principles of Mechanical Ventilation

Chapter 1 Physiologic Effects of Mechanical Ventilation

- Introduction
- Intrathoracic Pressure Changes
- Pulmonary Effects
 Shunt
 Ventilation
 Atelectasis
 Barotrauma
 Ventilator-Induced Lung Injury
 Pneumonia
 Hyperventilation and
 Hypoventilation
 Oxygen Toxicity
- Cardiac Effects
- Renal Effects
- Gastrointestinal Effects
- Nutrition Effects
- Sedation and Delirium
- Neuromuscular Effects
- Airway Effects
- Sleep Effects
- Patient-Ventilator Asynchrony
- Mechanical Malfunctions
- Points to Remember
- Additional Reading

Objectives

- Compare intrathoracic pressure during spontaneous breathing and positivepressure ventilation.
- 2. Describe the effects of positive-pressure ventilation on shunt and dead space.
- Discuss the roles of alveolar overdistention and opening/closing on ventilatorinduced lung injury.
- 4. Discuss the physiologic effects of positive-pressure ventilation on pulmonary, cardiac, renal, gastrointestinal, and neuromuscular function.
- 5. Describe the effects of sedation and delirium in the mechanically ventilated patient.
- Discuss the effects of positive-pressure ventilation on nutrition, the upper airway, and sleep.
- Describe methods that can be used to minimize the harmful effects of positivepressure ventilation.

Introduction

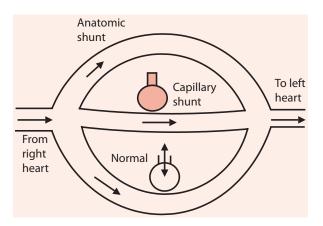
Ventilators for adult acute care use positive pressure applied to the airway opening to inflate the lungs. Although positive pressure is responsible for the beneficial effects of mechanical ventilation, it is also responsible for many potentially deleterious side effects. Application of mechanical ventilation requires an understanding of both its beneficial and adverse effects. In the care of a patient, this demands application of strat egies that maximize the potential benefit of mechanical ventilation while minimizing the potential for harm. Because of the homeostatic interactions between the lungs and other body systems, mechanical ventilation can affect nearly every organ system of the body. This chapter provides an overview of the beneficial and adverse physiologic effects of mechanical ventilation.

Intrathoracic Pressure Changes

During normal spontaneous breathing, intrathoracic pressure is negative throughout the ventilatory cycle. Intrapleural pressure varies from about $-5 \text{ cm H}_2\text{O}$ during exha lation to $-8 \text{ cm H}_2\text{O}$ during inhalation. Alveolar pressure fluctuates from $+1 \text{ cm H}_2$ during exhalation to $-1 \text{ cm H}_2\text{O}$ during inhalation. The decrease in intrapleural pressure during inhalation facilitates lung inflation and venous return.

Transpulmonary pressure is the difference between proximal airway pressure and intrapleural pressure. The greatest transpulmonary pressure that can be generated nor mally during spontaneous inspiration is about 30 cm H_2O . Transalveolar pressure, also called alveolar stress, should be limited to 20 cm H_2O during positive-pressure ventilation.

Intrathoracic pressure fluctuations during positive-pressure ventilation are oppo site to those that occur during spontaneous breathing. During positive-pressure ventilation, intrathoracic pressure is usually positive. Intrathoracic pressure increases during inhalation and decreases during exhalation.

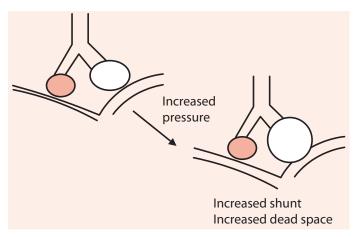

Pulmonary Effects

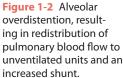
Shunt

Shunt is perfusion (blood flow) without ventilation (Figure 1-1). Pulmonary shunt occurs when blood flows from the right heart to the left heart without participating in gas exchange. The result of shunt is hypoxemia. Shunt can be either capillary shunt or anatomic shunt. Capillary shunt results when blood flows past unventilated alveoli. Examples of capillary shunt are atelectasis, pneumonia, pulmonary edema, and acute respiratory distress syndrome (ARDS). Anatomic shunt occurs when blood flows from the right heart to the left heart and completely bypasses the lungs. Normal anatomic cal shunt occurs due to the Thebesian veins and the bronchial circulation. Abnormal anatomic shunt occurs with congenital cardiac defects and with a patent foramen ovale. Total shunt is the sum of the capillary and anatomic shunt.

Positive-pressure ventilation usually decreases shunt and improves arterial oxygenation. However, if positive-pressure ventilation produces overdistention of some lung units, this may result in redistribution of pulmonary blood flow to unventilated regions (Figure 1-2). In this case, positive-pressure ventilation paradoxically results in hypoxemia.

Although positive-pressure ventilation may improve capillary shunt, it may worsen anatomic shunt. An increase in alveolar pressure may increase pulmonary vascular resistance, which could result in increased flow through the anatomic shunt (eg, patent foramen ovale), decreased flow through the lungs, and worsening hypoxemia. Thus, alveolar pressure should be kept as low as possible if an anatomic right-to-left shunt is present.

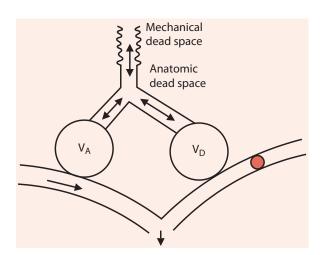



Figure 1-1 Schematic illustration of anatomic shunt and capillary shunt.

A relative shunt effect can occur with poor distribution of ventilation, such as might result from airway disease. With poor distribution of ventilation, some alveoli are underventilated relative to perfusion (shunt-like effect and low ventilation-perfusion ratio), whereas other alveoli are overventilated (dead space effect and high ventilation-perfusion ratio). Positivepressure ventilation may improve the distribution of ventilation, particularly by improving the ventilation of previously underventilated areas of the lungs.

Ventilation

Ventilation is the movement of gas into and out of the lungs. Tidal volume (V_T) is the amount of gas inhaled or exhaled with a single breath,


and minute ventilation (\dot{V}_{E}) is the volume of gas breathed in 1 minute. Minute ventila tion is the product of tidal volume (V_{T}) and breathing frequency (f_{b}) :

$$\dot{V}_{E} = V_{T} \times f_{b}$$

Ventilation is either dead space ventilation (\dot{V}_D) or alveolar ventilation (\dot{V}_A) . Minute ventilation is the sum of dead space and alveolar ventilation:

$$\dot{\mathbf{V}}_{\mathrm{E}} = \dot{\mathbf{V}}_{\mathrm{D}} + \dot{\mathbf{V}}_{\mathrm{A}}$$

Alveolar ventilation participates in gas exchange (Figure 1-3), whereas dead space ventilation does not. In other words, dead space is ventilation without perfusion. Ana tomic dead space is the volume of the conducting airways of the lungs and is about 150 mL in normal adults. Alveolar dead space refers to alveoli that are ventilated but not perfused, and it is increased by any condition that decreases pulmonary blood flow. Total

physiologic dead space fraction (V_D/V_T) is normally about onethird of \dot{V}_E . Mechanical dead space refers to the rebreathed volume of the ventilator cir cuit and acts as an extension of the anatomic dead space. Because of the fixed anatomic dead space, a low tidal volume increases the dead space frac tion and decreases alveolar ven tilation. An increased V_D/V requires a greater \dot{V}_E to main tain \dot{V}_A (and Paco₂).

Because mechanical ven tilators provide a tidal volume

and respiratory rate, any desired level of ventilation can be provided. The level of ventilation required depends on the desired $Paco_2$, \dot{V}_A , and tissue CO_2 production (V). This is illustrated by the following relationships (note that the factor 0.863 is not used if the measurements are made at the same conditions and using the same units):

$$Paco_2 \propto Vco_2/V_2$$

and

$$Paco_{2} = (\dot{V}co_{2} \times 0.863)/(\dot{V}_{E} \times [1 - V_{D}/V_{T}])$$

A higher \dot{V}_E will be required to maintain Paco₂ if $\dot{V}co_2$ is increased, such as occurs with fever and sepsis. If dead space is increased, a higher \dot{V}_E is required to maintain the same level of \dot{V}_E and Paco₂. If this level of ventilation is undesirable due to its injurious effects on the lungs and hemodynamics, Paco₂ can be allowed to increase (permissive hypercapnia). Mechanical ventilation can produce overdistention of normal alveoli, resulting in alveolar dead space. Mechanical ventilation can also distend airways, increasing anatomic dead space.

Atelectasis

Atelectasis is a common complication of mechanical ventilation. This can be the result of preferential ventilation of nondependent lung zones with passive ventilation, the weight of the lungs causing compression of dependent regions, or airway obstruction. Breathing 100% oxygen may produce absorption atelectasis, and it should be avoided if possible. Use of positive end-expiratory pressure (PEEP) to maintain lung volume is effective in preventing atelectasis.

Barotrauma

Barotrauma is alveolar rupture due to overdistention. Barotrauma can lead to pulmonary interstitial emphysema, pneumomediastinum, pneumopericardium, subcutaneous emphysema, and pneumothorax. Pneumothorax is of greatest clinical concern, because it can progress rapidly to life-threatening tension pneumothorax. Pneumomediastinum and subcutaneous emphysema rarely have major clinical consequences.

Ventilator-Induced Lung Injury

Alveolar overdistention causes acute lung injury and is determined by the difference between intra-alveolar pressure and the intrapleural pressure. Peak alveolar pressure (end-inspiratory plateau pressure) should be as low as possible. Many authorities have suggested that plateau pressure (Pplat) should not exceed 30 cm H₂O. But in the presence of normal chest wall mechanics, Pplat should be kept less than 28 cm H O to avoid injurious stress and strain on the lungs. Alveolar distention is also affected by intrapleural pressure. Thus, a stiff chest wall may be protective against alveolar overdistention. Overdistention is minimized by limiting tidal volume to 4 to 8 mL/kg predicted body weight, driving pressure (Pplat – PEEP) to less than 15 cm H₂O, and alveolar distending pressure (stress) to less than 20 cm H₂O. Ventilator-induced lung injury can also result from cyclical alveolar collapse during exhalation and reopening during subsequent inhalation. This injury is ameliorated by the application of PEEP to avoid alveolar derecruitment. Ventilating the lungs in a manner that promotes alveolar overdistention and derecruitment increases inflamma tion in the lungs (biotrauma). Inflammatory mediators may translocate into the pul monary circulation, resulting in systemic inflammation.

Spontaneously breathing patients with acute respiratory failure may have a high respiratory drive and breathe with large tidal volumes. This has the potential to gener ate injurious transpulmonary pressure swings. This is of particular concern in patients with lung injury and is more likely with pressure-targeted modes of ventilation. Spon taneous breathing can also result in the movement of gas from one region of the lungs to another, without a significant change in overall tidal volume. This phenomenon, called pendelluft, can result in tidal recruitment and local overdistention of dependent lung regions, as well as deflation/reinflation of corresponding nondependent regions. Pendelluft can occur during spontaneous breathing with either volume-control or pressure-control ventilation. Sedation and, in some cases, paralysis might be necessary to prevent patient self-inflicted lung injury.

An important characteristic of the lungs of mechanically ventilated patients is heterogeneity. That is, some lung units are normal, some are prone to overdistention, some are prone to collapse, some are consolidated, and some are fluid filled. Alveo lar wall stress is magnified when a collapsed alveolus is adjacent to one that is open (stress raiser). Recruitment of collapsed alveoli thus improves homogeneity within the lungs and decreases the potential of injury because it reduces opening/closing injury and the effects of stress raisers. If the collapsed alveolus cannot be recruited, however, a high recruiting pressure in the open alveolus will increase the potential for injury due to stress raisers. Thus, setting the ventilator is often a compromise between maximum recruitment and overdistention.

Pneumonia

Ventilator-associated pneumonia (VAP) can occur during mechanical ventilation. This is more common during invasive ventilation than with noninvasive ventilation. VAP most often results from aspiration of oropharyngeal secretions around the cuff of the endotracheal tube. A number of prevention strategies can be bundled to reduce the risk of VAP.

Hyperventilation and Hypoventilation

Hyperventilation lowers Paco₂ and increases arterial pH. This should be avoided because of the injurious effects of alveolar overdistention and an alkalotic pH. Respira tory alkalosis causes hypokalemia, decreased ionized calcium, decreased cerebral blood flow, and increased affinity of hemoglobin for oxygen (left shift of the oxyhemoglobin dissociation curve). Relative hyperventilation can occur when mechanical ventilation is provided for patients with chronic compensated respiratory acidosis. If a normal Paco is established in such patients, the result is an elevated pH. Because severe hypercapnia

appears to be independently associated with higher mortality in patients with ARDS, it should be avoided unless the alternative is an injurious ventilatory pattern.

Oxygen Toxicity

A high inspired oxygen concentration is considered toxic. What is less clear is the level of oxygen that is toxic. Oxygen toxicity is probably related to FIO_2 as well as the amount of time that the elevated FIO_2 is breathed. Although the clinical evidence is weak, it is commonly recommended that an FIO_2 greater than 0.6 be avoided, particularly if breathed for a period more than 48 hours. Whether permissive hypoxemia should be tolerated to avoid oxygen toxicity is an area of controversy.

High Fro_2 can result in a higher than normal Pao_2 . This may produce an elevation in $Paco_2$ due to the Haldane effect (ie, unloading CO_2 from hemoglobin), due to improving blood flow to low-ventilation lung units (ie, relaxing hypoxic pulmonary vasoconstriction), and due to suppression of ventilation (less likely). However, this is usually not an issue during mechanical ventilation because ventilation can be controlled. A high Pao_2 can produce retinopathy of prematurity in neonates, but this is not known to occur in adults.

Poorer outcomes have been reported with excessive oxygen administration for critically ill patients. A reasonable target Spo_2 during mechanical ventilation is 88% to 95%, which corresponds to a Pao₂ of 55 to 80 mm Hg. There are, however, several exceptions such as carbon monoxide poisoning and absorption of free air such as pneumocephalus.

Cardiac Effects

With spontaneous breathing, venous return to the right atrium is greatest during inhalation, when the intrathoracic pressure is lowest. During positive-pressure ventilation, venous return is greatest during exhalation and it may be decreased if expiratory time is too short or mean alveolar pressure is too high. Increased intrathoracic pressure decreases venous return and right heart filling. This effect is greatest with high alveolar pressure, high lung compliance, low chest wall compliance, and low circulating blood volume. Hypotension results when left heart filling and cardiac output are reduced. In the presence of left heart failure, the increase in right atrial pressure and subsequent reduction in venous return might assist the failing heart. Positive-pressure ventilation decreases left ventricular afterload as well as preload, both of which might be beneficial in the presence of left heart failure.

Positive-pressure ventilation may increase pulmonary vascular resistance. The increase in alveolar pressure, particularly with PEEP, has a constricting effect on the pulmonary vasculature. The increase in pulmonary vascular resistance decreases left ventricular filling and cardiac output. Increased right ventricular afterload can result in right ventricular hypertrophy, with ventricular septal shift and compromise of left ventricular function. Increased pulmonary vascular resistance with PEEP produces a West Zone 1 effect, which increases dead space, and thus results in less alveolar ventilation and a higher Paco₂.

Renal Effects

Urine output can decrease secondary to mechanical ventilation. This is partially related to decreased renal perfusion due to decreased cardiac output and may also be related to elevations in plasma antidiuretic hormone and reductions in atrial natriuretic pep tide that occur with mechanical ventilation. Fluid overload frequently occurs during mechanical ventilation, due to decreased urine output, excessive intravenous fluid administration, and elimination of insensible water loss from the respiratory tract due to humidification of the inspired gas.

Gastrointestinal Effects

Invasively or noninvasively ventilated patients may develop gastric distention (meteorism). Stress ulcers and gastrointestinal bleeding can occur in mechanically ventilated patients, and stress ulcer prophylaxis should be provided. Gastric and splanchnic perfusion is usually maintained provided that cardiac output is not impaired.

Nutrition Effects

Appropriate nutritional support is problematic in mechanically ventilated patients. Underfeeding can result in respiratory muscle catabolism and increases the risk of pneumonia and pulmonary edema. Overfeeding increases metabolic rate and thus increases the required minute ventilation. Overfeeding with carbohydrates increases $\dot{V}co_{2}$, further increasing the ventilation requirement.

Sedation and Delirium

Most critically ill mechanically ventilated patients have pain. Assessment of pain and provision of adequate analgesia is essential, but continuous deep sedation should be avoided to the extent possible. Intravenous opioids are recommended for pain control. Minimizing the depth and duration of sedation is an important practice in the care of mechanically ventilated patients. This can be achieved by practices such as proto cols to minimize sedation or daily spontaneous awakening trials. Non-benzodiazepine sedatives such as propofol or dexmedetomidine are preferred. An appropriate sedation target is a Riker Sedation-Agitation Scale (SAS) score of 3 to 4, or a Richmond Agitation-Sedation Scale (RASS) score of -2 to 0.

Delirium may affect as many as 80% of mechanically ventilated critically ill patients, resulting in increased mortality and hospital length of stay. The Confusion Assessment Method for the ICU (CAM-ICU) and the Intensive Care Delirium Screening Checklist (ICDSC) are the most valid and reliable delirium monitoring tools for adult critically ill patients. Early mobilization of adult ICU patients is recommended to reduce the incidence and duration of delirium.

The mnemonic ABCDEF has been proposed to remind clinicians of important steps of care in mechanically ventilated patients:

A: Assess, prevent, and manage pain

B: Both spontaneous awakening trials and spontaneous breathing trials

C: Choice of analgesia and sedation

D: Delirium; assess, prevent, manage

E: Early mobility and exercise

F: Family engagement and empowerment

Neuromuscular Effects

Mechanically ventilated patients are at increased risk of critical illness weakness (polyneuropathy and polymyopathy). Survivors of ARDS have a reduced 6-minute walk distance 1 year after discharge. Controlled mechanical ventilation is associated with adverse effects on diaphragm (and other respiratory muscles) structure and function, known as ventilator-induced diaphragmatic dysfunction. On the other extreme, excessive respiratory muscle activity can result in muscle fatigue. Thus, an appropriate balance between respiratory muscle activity and support from the ventilator is important. Mobilization of mechanically ventilated patients is used increasingly to address generalized weakness in this patient population.

Airway Effects

Critically ill patients are usually mechanically ventilated through an endotracheal or tracheostomy tube. This puts these patients at risk for complications of artificial airways such as laryngeal edema, tracheal mucosal trauma, contamination of the lower respiratory tract, sinusitis, loss of the humidifying function of the upper airway, and communication problems. These complications can be avoided through appropriate use of noninvasive ventilation.

Sleep Effects

Mechanical ventilation can have positive and negative effects on sleep. For patients receiving prolonged mechanical ventilation, ventilation at night may improve sleep quality. However, during sleep, the apneic threshold for Paco₂ increases, and lowering Paco₂ level below this threshold due to excessive ventilation may rapidly lead to central apneas and periodic breathing. Thus, use of modes with backup ventilation (eg, continuous mandatory ventilation rather than pressure support ventilation) is preferable. Proportional modes (eg, neurally adjusted ventilatory assist and proportional assist ventilation) may improve asynchrony during sleep, but their effect on sleep quality has not been conclusively demonstrated. Noninvasive ventilation improves sleep in